Startseite » Aufmacher »

Kohlenstoff-Materialien aus Pflanzenabfällen

Alternative zu Kohle und Erdöl
Kohlenstoff-Materialien aus Pflanzenabfällen

TT_Humboldt-Biokohle_044_Untermann_02.jpg
Im Rahmen des Projektes GreenCarbon untersuchte das Team der Uni Hohenheim Bioraffinerie-Verfahren, die pflanzliche Biomasse in hochmoderne Kohlenstoff-Materialien umwandeln
Anzeige
Es ist nur eine Frage der Zeit, bis Kohle und Erdöl zur Neige gehen. Eine unerschöpfliche Alternative könnten Pflanzenabfälle sein, die über spezielle Verfahren in hochwertige Kohlenstoff-Materialien umgewandelt werden. Neue wissenschaftliche Erkenntnisse und Technologien für die Herstellung derartiger Stoffe zu gewinnen, die dann zu kommerziellen Produkten verarbeitet werden können, ist das Ziel des von der Europäischen Union geförderten Projektes „GreenCarbon“, das im September 2020 ausläuft.

Die Vorstellung ist bestechend: Nach und nach könnten in den kommenden Jahren Kohle und Erdöl – Ausgangsstoffe für die Herstellung von Kunststoffen, Farbstoffen und Materialien – durch erneuerbare Ressourcen ersetzt werden. Vorausgesetzt, sie sind einerseits einfach zu synthetisieren und kostengünstig, erfüllen andererseits aber auch spezifische Anforderungen. Kohlenstoffmaterialien, die aus nachwachsenden Rohstoffen erzeugt werden, wie z. B. aus pflanzlicher Biomasse, sind hier ideale Kandidaten.

Pflanzenabfälle könnten erdölbasierte Produkte ersetzen

„Pflanzen bauen chemische Strukturen auf, die Menschen als Ersatz für erdölbasierte Produkte nutzen können“, erklärt Prof. Dr. Kruse von der Stuttgarter Universität Hohenheim. Durch komplexe Verkohlungsprozesse, die Karbonisierung, können unterschiedlichste Biomassen zu Kohlenstoffmaterialien umgewandelt werden.

Für trockene Biomassen mit nicht mehr als 10 % Wassergehalt wie Heu, Holz oder Stroh kann dabei das Pyrolyse-Verfahren eingesetzt werden, bei dem das Ausgangsmaterial unter Sauerstoffabschluss und hohen Temperaturen verkohlt wird, ähnlich wie in einem Holzkohlemeiler.

Feuchte Biomassen dagegen, die zu 80 bis 90 % aus Wasser bestehen, werden in der so genannten hydrothermalen Karbonisierung (HTC) in einen kohlenstoffhaltigen Feststoff umgewandelt. Bei Temperaturen zwischen 180 und 250 °C unter leicht erhöhtem Druck, vergleichbar einem Schnellkochtopf, entstehen dabei durch verschiedene chemische Prozesse Kohlenstoffnanostrukturen, die technologisch sehr interessante Eigenschaften aufweisen können.

Anwendungsmöglichkeiten solcher Hydrokohlen sind z. B. Aktivkohlen zur Reinigung von Luft, Gasen oder (Ab-)Wasser, Speichermedien für Wasserstoff, Elektrodenmaterialien für Batterien und Brennstoffzellen oder Superkondensatoren, wie sie unter anderem für die Herstellung von E-Autos benötigt werden.

Konkurrenz zur Nahrungsmittelproduktion vermeiden

Um Konkurrenz zur Nahrungsmittelproduktion zu vermeiden, setzt Prof. Dr. Kruse bevorzugt auf Ausgangsmaterialien, die in der Landwirtschaft und Lebensmittelproduktion als Nebenprodukte oder Abfall anfallen – z. B. Gemüseblätter, Stroh oder auch Gärreste, die bei der Vergärung von Biomasse in einer Biogasanlage zurückbleiben. So können landwirtschaftliche Abfälle genutzt und gleichzeitig neue hochwertige Produkte hergestellt werden.

Für ihre Forschung verwendet sie vor allem Biertreber, also die bei der Bierherstellung anfallenden Rückstände des Braumalzes, die sich durch einen hohen Eiweißgehalt auszeichnen. Bei der HTC wird der im Eiweiß enthaltene Stickstoff in das Kohlenstoffgerüst eingebaut. So entstehen Materialien, die unter Umständen sogar besser sind als die auf dem Markt befindlichen und die z. B. in Energiespeichern als Superakkumulatoren eingesetzt werden können.

Das richtige Verfahren für das gewünschte Produkt finden

Allerdings erfordern die unterschiedlichen Anwendungen auch unterschiedliche Eigenschaften der Hydrokohlen: Für die Nutzung als Brennstoff soll der Asche- und Stickstoffgehalt möglichst niedrig sein, bei der Verwendung als Langzeitdünger hingegen ist ein hoher Mineralien- und Stickstoffgehalt wünschenswert.

Bisher sind die chemischen Prozesse der Verfahren und ihr Einfluss auf die Produkteigenschaften nicht genau bekannt. Die zielgerichtete Herstellung von Materialien mit definierten Eigenschaften ist daher schwierig, wenn nicht unmöglich. Deswegen untersucht das Team nicht nur, welchen Einfluss welche Stellgröße auf das Endergebnis hat, sondern hat auch ein neuartiges kaskadiertes HTC-Verfahren mit anschließender Pyrolyse entwickelt.

„Wir müssen zunächst vor allem die wesentlichen Prozesse des Verfahrens verstehen“, sagt Prof. Dr. Kruse. Dabei ist es ihr allerdings wichtig, nicht nur reine Grundlagenforschung zu betreiben: „Bei allen unseren Untersuchungen ist das langfristige Ziel immer, die Prozesse aus dem Labormaßstab auch im großen, industriellen Maßstab anwenden zu können.“

So konnten bisher sowohl im Labor- als auch im Pilotanlagenmaßstab bereits eine große Anzahl von Experimenten in Hohenheim und im Fraunhofer-Zentrum für Chemisch-Biotechnologische Prozesse (CBP) in Leuna, einem der Projektpartner, durchgeführt werden, um die am besten geeigneten Betriebsbedingungen hinsichtlich der Energieeffizienz sowie der Eigenschaften der hergestellten Kohle zu ermitteln.

Produktergebnis weitgehend unabhängig von verwendeter Biomasse

Gerade bei der HTC zeigte sich, dass der Prozess so gesteuert werden kann, dass die verwendete Biomasse praktisch keinen Einfluss auf das Endprodukt hat. „Trotz großer Unterschiede im Ausgangsmaterial entstehen bei der HTC immer ähnliche Spektren an Endsubstanzen,“ freut sich Prof. Dr. Kruse. Damit ist das Verfahren nicht auf eine Quelle beschränkt, sondern es können viele verschiedene Ausgangsmaterialien verwendet werden. Noch bessere Ergebnisse werden erreicht, wenn die Hydrokohle anschließend auch noch einer Pyrolyse unterzogen wird.

Das Projekt GreenCarbon

Der internationale Forschungsverbund GreenCarbon beschäftigt sich mit der Frage, wie moderne, hoch entwickelte Materialien aus Bioabfällen hergestellt werden können. Unter der Leitung der Universität von Saragossa untersuchen acht Forschungsinstitute und sieben Industriepartner alle Aspekte der Herstellung von maßgeschneiderten Kohlenstoffmaterialien, angefangen beim Ausgangsmaterial über dessen Verarbeitung bis hin zu seinen Anwendungsmöglichkeiten. Die gewonnenen wissenschaftlichen Erkenntnisse und Technologien sollen es ermöglichen, kommerzielle Produkte auf Kohlenstoff-Basis zu entwickeln, die z. B. als Energiespeicher, als Bodenverstärker oder als CO2-Abscheider eingesetzt werden können.

Projektbeginn war der der 1. Oktober 2016, Projektende für das Gesamtprojekt ist der 30. September 2020. Die Arbeiten in Hohenheim wurden bereits zum 30. April 2020 abgeschlossen.

Anzeige
Schlagzeilen
Newsletter

Jetzt unseren Newsletter abonnieren

cav-Produktreport

Für Sie zusammengestellt

Webinare & Webcasts

Technisches Wissen aus erster Hand

Whitepaper

Hier finden Sie aktuelle Whitepaper

Top-Thema: Instandhaltung 4.0

Lösungen für Chemie, Pharma und Food

Pharma-Lexikon

Online Lexikon für Pharma-Technologie

Prozesstechnik-Videos

Hier finden Sie alle aktuellen Videos

phpro-Expertenmeinung

Pharma-Experten geben Auskunft

Prozesstechnik-Kalender

Alle Termine auf einen Blick

Anzeige
Anzeige

Industrie.de Infoservice
Vielen Dank für Ihre Bestellung!
Sie erhalten in Kürze eine Bestätigung per E-Mail.
Von Ihnen ausgesucht:
Weitere Informationen gewünscht?
Einfach neue Dokumente auswählen
und zuletzt Adresse eingeben.
Wie funktioniert der Industrie.de Infoservice?
Zur Hilfeseite »
Ihre Adresse:














Die Konradin Verlag Robert Kohlhammer GmbH erhebt, verarbeitet und nutzt die Daten, die der Nutzer bei der Registrierung zum Industrie.de Infoservice freiwillig zur Verfügung stellt, zum Zwecke der Erfüllung dieses Nutzungsverhältnisses. Der Nutzer erhält damit Zugang zu den Dokumenten des Industrie.de Infoservice.
AGB
datenschutz-online@konradin.de