Startseite » Chemie » Industrie 4.0 (Chemie) »

Roboter lernen von anderen Robotern

Datensichere Trainingsplattform für intelligente Industrieroboter
Roboter lernen von Robotern

Roboter lernen von Robotern
Durch gemeinsames, aber räumlich getrenntes und datensicheres Training lernen autonome Greifroboter an unterschiedlichen Standorten voneinander Bild: Amadeus Bramsiepe, KIT
Autonome, flexibel einsetzbare Roboter gelten als Schlüsseltechnologie für Industrie und Logistik 4.0. Das Problem: Um mit Künstlicher Intelligenz (KI) gesteuerte Roboter zu trainieren, sind sehr große Datenmengen nötig, über die aber nur die wenigsten Unternehmen verfügen. Die Lösung: Roboter unterschiedlicher Unternehmen an verschiedenen Standorten lernen voneinander. Forschende des Karlsruher Instituts für Technologie (KIT) haben mit Partnern Möglichkeiten des gemeinsamen Lernens entwickelt, ohne dass sensible Daten und Betriebsgeheimnisse geteilt werden müssen.

Maximilian Gilles vom Institut für Fördertechnik und Logistiksysteme (IFL) am KIT erklärt: „Bei herkömmlichen maschinellen Lernmethoden werden alle Daten gesammelt und die KI auf einem zentralen Server trainiert.“ Durch gemeinsames, aber örtlich getrenntes Lernen, auch Federated Learning genannt, lassen sich Trainingsdaten von mehreren Stationen, aus mehreren Werken oder sogar mehreren Unternehmen nutzen, ohne dass Beteiligte sensible Unternehmensdaten herausgeben müssen. „Damit konnten wir jetzt autonome Greifroboter in der Logistik so trainieren, dass sie in der Lage sind, auch solche Artikel zuverlässig zu greifen, die sie vorher noch nicht gesehen haben“, so Gilles. Aufgrund der Vielfalt der Gegenstände in einem Industrielager sei das eine sehr anspruchsvolle Aufgabe.

Training ohne zentrales Datensammeln

Für das Training gab es im 2021 gestarteten Projekt Flairop, das jetzt abgeschlossen ist, keinen Austausch von Daten wie Bildern oder Greifpunkten, sondern es wurden lediglich die lokalen Parameter der neuronalen Netze, also stark abstrahiertes Wissen, zu einem zentralen Server übertragen. Dort wurden die Gewichte von allen Stationen gesammelt und mithilfe verschiedener Algorithmen zusammengeführt. Dann wurde die verbesserte Version zurück auf die Stationen vor Ort gespielt und auf den lokalen Daten weiter trainiert. Dieser Prozess wurde mehrfach wiederholt. „Unsere Ergebnisse zeigen, dass mit Federated Learning kollaborativ robuste KI-Lösungen für den Einsatz in der Logistik erzeugt werden können, ohne dabei sensible Daten zu teilen“, sagt Sascha Rank vom Institut für Angewandte Informatik und Formale Beschreibungsmethoden (AIFB) des KIT, das ebenfalls Partner in Flairop war.

Roboter trainieren gemeinsam

Zukünftig wollen die Forschenden ihr Federated-Learning-System so weiterentwickeln, dass es als Plattform unterschiedlichen Unternehmen ermöglicht, Robotersysteme gemeinsam zu trainieren, ohne untereinander Daten teilen zu müssen. Für die weitere Forschung suchen Maximilian Gilles und sein Team Partner aus Industrie und Forschung.

Für das Training der Roboter wurden insgesamt fünf autonome Kommissionierstationen aufgebaut: zwei am IFL sowie drei bei Festo mit Sitz in Esslingen am Neckar. „Wir freuen uns, dass es uns gelungen ist zu zeigen, dass Roboter voneinander lernen können, ohne sensible Daten und Betriebsgeheimnisse zu teilen. Dadurch schützen wir die Daten unserer Kundinnen und Kunden und wir gewinnen zudem an Geschwindigkeit, weil die Roboter auf diese Weise viele Aufgaben schneller übernehmen können. So können die kollaborativen Roboter zum Beispiel Produktionsmitarbeitende bei sich wiederholenden, schweren und ermüdenden Aufgaben unterstützen“, sagt Dr. Jan Seyler, Leiter Advanced Development Analytics and Control bei Festo.

Das Forschungsprojekt Flairop

Das Projekt Flairop (steht für: Federated Learning for Robot Picking) war eine Partnerschaft zwischen kanadischen und deutschen Organisationen und Firmen. Die kanadischen Projektpartner konzentrierten sich auf Objekterkennung durch Deep Learning, Explainable AI und Optimierung, während die deutschen Partner ihre Expertise in der Robotik, beim autonomen Greifen durch Deep Learning und in der Datensicherheit einbrachten.

  • KIT-IFL: Entwicklung Algorithmus Greifpunktbestimmung, Entwicklung automatische Lerndatengenerierung
  • KIT-AIFB: Entwicklung Federated Learning Framework
  • Festo SE und Co. KG: Konsortialführung, Entwicklung Kommissionierstationen, Pilotierung
  • University of Waterloo (Kanada): Entwicklung Algorithmus Objekterkennung
  • Darwin AI (Kanada): Lokale und Globale Netzwerkoptimierung

Flairop wurde vom kanadischen National Research Council (NRC) und dem deutschen Bundesministerium für Wirtschaft und Klimaschutz (BMWK) gefördert. Ans KIT gingen dabei rund 750 000 Euro.

Unsere Webinar-Empfehlung
Newsletter

Jetzt unseren Newsletter abonnieren

cav-Produktreport

Für Sie zusammengestellt

Webinare & Webcasts

Technisches Wissen aus erster Hand

Whitepaper

Hier finden Sie aktuelle Whitepaper

Top-Thema: Instandhaltung 4.0

Lösungen für Chemie, Pharma und Food

Pharma-Lexikon

Online Lexikon für Pharma-Technologie

phpro-Expertenmeinung

Pharma-Experten geben Auskunft

Prozesstechnik-Kalender

Alle Termine auf einen Blick


Industrie.de Infoservice
Vielen Dank für Ihre Bestellung!
Sie erhalten in Kürze eine Bestätigung per E-Mail.
Von Ihnen ausgesucht:
Weitere Informationen gewünscht?
Einfach neue Dokumente auswählen
und zuletzt Adresse eingeben.
Wie funktioniert der Industrie.de Infoservice?
Zur Hilfeseite »
Ihre Adresse:














Die Konradin Verlag Robert Kohlhammer GmbH erhebt, verarbeitet und nutzt die Daten, die der Nutzer bei der Registrierung zum Industrie.de Infoservice freiwillig zur Verfügung stellt, zum Zwecke der Erfüllung dieses Nutzungsverhältnisses. Der Nutzer erhält damit Zugang zu den Dokumenten des Industrie.de Infoservice.
AGB
datenschutz-online@konradin.de