Startseite » Chemie » Verfahren mechanisch (Chemie) »

Membranen erlauben hochselektrive Trennung

Tiefer Blick in winzige Poren
Hochselektive Membranen

Membranen aus vertikal ausgerichteten Kohlenstoff-Nanoröhren (VaCNT) ermöglichen es, Wasser bei hoher Durchflussgeschwindigkeit und niedrigem Druck zu reinigen oder zu entsalzen. Das Wechselspiel der Kräfte in den winzigen Poren haben Forschende am Karlsruher Institut für Technologie (KIT) nun mit Partnern anhand von Experimenten zur Adsorption von Steroidhormonen untersucht. Dabei stellten sie fest, dass sich VaCNT mit gezielt gestalteter Porengeometrie und Porenoberflächenstruktur für hochselektive Membranen eignen.

Sauberes Trinkwasser ist für alle Menschen weltweit überlebenswichtig. Um Mikroverunreinigungen wie beispielsweise gesundheits- und umweltschädliche Steroidhormone effizient zu entfernen, eignen sich Membranen. Als besonders vielversprechendes Material dafür bieten sich vertikal ausgerichtete Kohlenstoff-Nanoröhren (Vertically aligned carbon nanotube – VaCNT) an. „Dieses Material ist genial – mit winzigen Poren, die einen Durchmesser von 1,7 bis 3,3 nm, eine fast perfekte zylindrische Form und eine geringe Verwindung aufweisen“, erklärt Professorin Andrea Iris Schäfer, Leiterin des Institute for Advanced Membrane Technology (IAMT) des KIT. „Die Nanoröhren sollten eigentlich stark adsorbieren, weisen jedoch eine ganz geringe Reibung auf.“ Momentan sind die Poren für einen effektiven Rückhalt zu groß, kleiner sind sie technisch noch nicht machbar.

Wechselspiel der Kräfte

Warum VaCNT-Membranen hervorragend als Wasserfilter taugen, haben Forschende am IAMT nun anhand von Experimenten mit Steroid-Mikroverunreinigungen untersucht, und zwar mit Membranen, die am Lawrence Livermore National Laboratory (LLNL) in Livermore (Kalifornien, USA) hergestellt wurden. Ergebnis der nun veröffentlichten Studie: Die geringe Adsorption der VaCNT, das heißt die Anlagerung an der Oberfläche, ist durchaus wünschenswert für hochselektive, auf ganz bestimmte Stoffe ausgerichtete Membranen.

Wie die Studie zeigt, hängt die Adsorption in Membran-Nanoporen nicht nur von der Adsorptionsoberfläche und der Begrenzung der Stoffübertragung, sondern auch vom Wechselspiel der hydrodynamischen Kräfte, der Reibung sowie der Anziehungs- und Abstoßungskräfte an der Flüssigkeit-Wand-Grenzfläche ab. Bei für Wasser sehr permeablen Nanoporen ist eine Interaktion wegen der geringen Reibung und der hohen Geschwindigkeit schwach. „Wenn die Moleküle nicht aufgrund ihrer Größe zurückgehalten werden, dann bestimmt oft die Interaktion mit dem Material, was passiert – die Moleküle hüpfen sozusagen durch die Membran, wie ein Kletterer an einer Wand hinaufsteigt. Dies ist einfacher, wenn es viele gute Griffe gibt“, erläutert Schäfer. Untersuchungen wie die nun vorgestellte helfen dabei, eine gezielte Gestaltung der Porengeometrie und der Porenoberflächenstruktur zu erreichen.

Zehn Jahre von der Idee zum Experiment

Entwickelt wurden die Membranen von Dr. Francesco Fornasiero und seinem Team am LLNL. Die Experimente mit Mikroverunreinigungen wurden am IAMT mit modernsten analytischen Experimenten durchgeführt und ausgewertet. „Von der Idee bis zur erfolgreichen Realisation der Studie, die in weiten Kreisen der Membrantechnologie mit Spannung erwartet wurde, hat es gut zehn Jahre gedauert“, berichtet Schäfer. Solche fast perfekten Membranen herzustellen ist extrem schwierig. Über größere Flächen, das heißt Flächen von vielen Quadratzentimetern, kommen oft Defekte vor, welche die Ergebnisse beeinflussen. In den vergangenen Jahren gelang es am LLNL, Membranen auf größeren Flächen zu fertigen. Währenddessen bauten die Forschenden am IAMT sehr kleine Systeme für Experimente, mit denen sie Spurenschadstoffe auf zwei Quadratzentimetern filtrieren können. „Downscaling ist extrem schwierig. So etwas gemeinsam zu schaffen ist ein Riesenerfolg“, erklärt Schäfer. „Nun warten wir gespannt auf die Entwicklung von Membranen mit noch kleineren Poren.“

Ultra- und Nabofiltration profitieren

Die Studie, die sich erstmals auf das Wechselspiel der hydrodynamischen Kräfte, der Reibung sowie der Anziehungs- und Abstoßungskräfte fokussiert, liefert grundlegende Erkenntnisse zur Wasseraufbereitung. Davon profitieren können vor allem Prozesse der Ultra- und Nanofiltration, wo Nanoporen die Filterung steuern. (or)

Originalpublikation (Open Access)

Minh N. Nguyen, Melinda L. Jue, Steven F. Buchsbaum, Sei Jin Park, Florian Vollnhals, Silke Christiansen, Francesco Fornasiero, Andrea I. Schäfer: Interplay of the forces governing steroid hormone micropollutant adsorption in vertically-aligned carbon nanotube membrane nanopores. Nature Communications, 2024. DOI: 10.1038/s41467–024–44883–2

https://www.nature.com/articles/s41467–024–44883–2

Unsere Whitepaper-Empfehlung
Newsletter

Jetzt unseren Newsletter abonnieren

cav-Produktreport

Für Sie zusammengestellt

Webinare & Webcasts

Technisches Wissen aus erster Hand

Whitepaper

Hier finden Sie aktuelle Whitepaper

Top-Thema: Instandhaltung 4.0

Lösungen für Chemie, Pharma und Food

Pharma-Lexikon

Online Lexikon für Pharma-Technologie

phpro-Expertenmeinung

Pharma-Experten geben Auskunft

Prozesstechnik-Kalender

Alle Termine auf einen Blick


Industrie.de Infoservice
Vielen Dank für Ihre Bestellung!
Sie erhalten in Kürze eine Bestätigung per E-Mail.
Von Ihnen ausgesucht:
Weitere Informationen gewünscht?
Einfach neue Dokumente auswählen
und zuletzt Adresse eingeben.
Wie funktioniert der Industrie.de Infoservice?
Zur Hilfeseite »
Ihre Adresse:














Die Konradin Verlag Robert Kohlhammer GmbH erhebt, verarbeitet und nutzt die Daten, die der Nutzer bei der Registrierung zum Industrie.de Infoservice freiwillig zur Verfügung stellt, zum Zwecke der Erfüllung dieses Nutzungsverhältnisses. Der Nutzer erhält damit Zugang zu den Dokumenten des Industrie.de Infoservice.
AGB
datenschutz-online@konradin.de